Dimethyl Compounds of Platinum(I1)

py)](PF₆)₂, 62601-26-7; $[Ru(phen)_2(napy)](PF_6)_2$, 62571-34-0; $[Ru(phen)₂(ppyz)](PF₆)₂, 62571-32-8; [Ru(bpy)₃](PF₆)₂, 60804-74-2;$ $[Ru(phen)_3](PF_6)_2$, 60804-75-3; napy, 254-60-4; 2-mnapy, 1569-16-0; 2,7-dmnapy, 14903-78-7; ppyz, 322-46-3; Ru(phen)₂Cl₂, 15453-59-5; $Ru(bpy)_{2}Cl_{2}$, 19542-80-4.

References and Notes

- **(1)** Presented in part at the Central Regional Meeting of the American
- Chemical Society, May **19-21, 1976,** Akron, Ohio.
- **(2)** To whom correspondence should be addressed. **(3)** G. B. Porter, P. C. Ford, R. E. Hintze, and J. D. Petersen, *Conceprs Inorg. Photochem.,* **203 (1975),** and references therein.
- **(4)** K. W. Hipps and G. W. Crosby, *J. Am. Chem.* Soc., **97,7042 (1975). (5) C.** T. Lin and N. Sutin, *J. Phys. Chem., 80,* **97 (1976).**
-
- (6) W. P. Griffith, "The Chemistry of the Rare Platinum Metals", Interscience, New York, N.Y., 1967, pp 200–203.
(7) G. M. Bryant, J. E. Fergusson, and H. K. J. Powell, *Aust. J. Chem.*, 24, 257 (1971).
-
- **(8)** H. **J.** Stoklosa, J. R. Wasson, E. **V.** Brown, H. W. Richardson, and W. E. Hatfield, *Inorg. Chem.,* **14, 2378 (1975). (9) J.** A. Zoltewicz and L. W. Deady, *Tetrahedron, 28,* **1983 (1972).**
-
- **(10)** W. W. Paudler and T. J. **Kress,** *J. Heterocycl. Chem.,* **4, 284 (1967).**
- **(11)** Y. Hamada and **I.** Takeuchi, *Chem. Pharm. Bull.,* **19, 1857 (1971).**
- C. L. Leese and H. N. Rydon, *J. Chem.* **Soc., 303 (1955).**
- Professor T. **J.** Meyer, private communication; modification of **a procedure reported** by B. Bosnich and E. P. Dwyer, *Aust. J. Chem.,* **19,2229 (1966).** R. N. Adams, "Electrochemistry at Solid Electrodes", Marcel Dekker, New York, N.Y., **1969,** p **206.**
-
- E. **P.** Dwyer, H. A. Goodwin, and E. C. Gyarfas, *Ausr. J. Chem.,* **16, 45, 544 (1963).**
- G. M. Brown, T. R. Weaver, F. R. Keene, and T. J. Meyer, *Znorg. Chem.,* **IS, 190 (1976). S.** F. Mason, *Phys. Merhods Heterocycl. Chem., 2,* **1 (1963).**
-
- R. **J.** Staniewicz and D. G. Hendricker, *J. Am. Chem.* **Soc.,** in **press.** G. M. Brown, R. W. Callahan, and T. J. Meyer, *Inorg. Chem.,* **14, 1915**
- (1975).

(20) S. Piekarski and R. N. Adams in "Physical Methods of Chemistry", Part **S.** Piekarski and R. N. Adams in "Physical Methods of Chemistry", Part IIA, A. Weissberger and B. W. Rossiter, Ed., Wiley-Interscience, New York, N.Y., **1971.**
- E. R. Brown and R. F. Large in "Physical Methods of Chemistry", Part IIA, A. Weissberger and B. W. Rossiter, Ed., Wiley-Interscience, New York, N.Y., **1971.**
- J. B. Headridge, "Electrochemical Techniques for Inorganic Chemists",
- Academic Press, New York, N.Y., **1969,** p **47.** D. A. Buckingham and **A.** M. Sargeson, "Chelating Agents and Metal Chelates", F. P. Dwyer and D. P. Mellor, Ed., Academic Press, New York, N. Y., **1964,** pp **269-271.**
- H. Taube, *Suru. Prog. Chem., 6,* **1 (1973).**

Contribution from the IBM Research Laboratory, San Jose, California 95193

Dimethyl Compounds of Platinum(I1). 1. Oxidative Addition Reactions Involving Group 4 Element-Halogen Bonds

JAN KUYPER

Received February 9, 1977 AIC70102N

Reactions of PtMe2(N-N) (N-N = 2,2'-bipyridine, **1** ,lo-phenanthroline, **2,9-dimethyl-4,7-diphenyl-** 1 ,IO-phenanthroline) with methyltin- or aryltin-halogen compounds SnR_nCl_{4-n} ($R = Me$, Ph ; $n = 0-3$), lead diphenyl dichloride, $PbPh_2Cl_2$, and lead triphenyl chloride, PbPh₃Cl, proceeded via an oxidative addition involving the Sn-Cl or Pb-Cl bond to give the new compounds $PtMe_2Cl(N-N)(SnR_nCl_{3-n})$ and $PtMe_2Cl(N-N)(PbPh_mCl_{3-m})$ ($m = 1, 2$) in almost quantitative yield. The compounds and their reactions were studied by ¹H NMR spectroscopy. Exchange reactions of PtMe₂Cl(bpy)(SnR_nCl_{3-n}) with SnR'_mCl_{4-m} and reactions with MeI showed that their relative stability decreased in the order $\text{SnPhCl}_2 > \text{SnMeCl}_2$ $>$ SnPh₂Cl > SnMe₂Cl > SnPh₃ > SnMe₃. With MeI no reaction was observed, PtMe₃Cl(bpy) was formed, or PtMe₃I(bpy) depending upon the stability of the platinum-tin bond. In contrast with the SnR_nCl_{4-n} compounds themselves, the platinum-tin compounds were not affected by Lewis bases such as H_2O , ROH, pyridine, and PPh₃. Although there was evidence that the platinum-lead bonds were stronger than the corresponding tin bonds, the former compounds decomposed in CH_2Cl_2 solution except PtMe₂Cl(Ph₂Me₂phen)(PbPh₂Cl), which was stable. In addition a halogen exchange between PtMe₃Cl(bpy) and Me1 was observed.

Introduction

The formation of Pt-M bonds (M is a group **4** element: Si, Ge, Sn, or Pb) by oxidative addition of group **4** compounds to $Pt(0)^{1-6}$ or $Pt(II)^{6-10}$ compounds has received considerable attention.

Recently it was clearly established' that oxidative addition of SnR_3X ($R = Me$, Ph ; $X = Cl$, Br , I , OH , NO_3) to Pt $(C_2H_4)(PPh_3)_2$ proceeded by "insertion" of platinum in the Sn-C bond rather than in the Sn-X bond, as was described earlier.² Similarly oxidative addition of $SiRX_2H$ to square-planar Rh(1) and Ir(1) compounds involved the M-H instead of the M-X bond.^{11,12} Reactions of MR_3H compounds $(R = Me, Ph; M = Si, Ge, Sn)$ with $Pt(0)$ compounds probably proceed via oxidative addition of M-H to platinum, followed by reaction with another molecule R_3MH . This results in H_2 elimination or again oxidative addition.⁵⁻⁷ Also reactions of $\text{SiMe}_n\text{Cl}_{3-n}H$ ($n = 0, 1$) with Pt(0) compounds proceeded similarly and did not involve rupture of the Si-Cl or Si-C bond.^{5,6} Oxidative addition of SnMe_3H to Pt(II) also involved the $Sn-H$ bond.⁸⁻¹⁰

Since no oxidative additions of MR_nCl_{4-n} ($R = Me$, Ph ; $M = Si$, Ge , Sn , Pb ; $n = 0-3$) with $Pt(II)$ compounds are known, we became interested in reactions of MR_nCl_{4-n} with

 $PtMe₂(bpy)$, a compound which is known to undergo oxidative additions very readily.¹³ The results of this investigation with tin and lead compounds are presented in this paper.

Experimental Section

General Information. Although the compounds prepared in this study were stable in air, several of the starting materials were sus- ceptible to atmospheric moisture. Therefore all preparations were carried out in a dry nitrogen atmosphere. The abbreviations bpy $=$ 2,2'-bipyridine, phen = 1,10-phenanthroline, Ph_2Me_2 phen = 2,9dimethyl-4,7-diphenyl-1,10-phenanthroline, and pic $=$ 4-picoline are used in the text.

Chemicals. Tin and lead alkyl or aryl chlorides are commercially available and were used without further purification. Reagent grade solvents were dried and distilled prior to use. 'H NMR spectra in $CH₂Cl₂$ were recorded on a Varian HA100 NMR spectrometer. Melting and decomposition points were recorded on a DTA apparatus, Du Pont Model 900, and were checked visually. Elemental analyses were performed by Childers Laboratories, Milford, N.J. Analytical data are summarized in Table **I.**

Preparation of PtMe₂(bpy). Bipyridine (8.4 mmol) was added with rapid stirring to a warm solution (60 °C) of $[PtMe₂(SEt₂)]₂¹³$ (4 mmol) in benzene (about 100 mL). As soon as all the bipyridine had dissolved, stirring was stopped. After 5 min at 60 °C and subsequently 24 h at 5° C the red needles of PtMe₂(bpy) were collected on a filter and vacuum-dried for 1 h; yield 85% (two fractions). PtMe₂(phen) was

Inorganic Chemistry, Vol. 16, No. 9, 1977 **2171**

excess of SnMe₃Cl is present. Due to rapid exchange the only observed Sn-Me resonance is of SnMe₃Cl. ^f These resonances in the free ligands are respectively 3.32 ppm (bpy), 3.78 ppm (phen), and -2.40 ppm (Ph₁M₂ph

prepared similarly as fine orange crystals in *80%* yield.

Preparation of PtMe₂(Ph₂Me₂phen). 2,9-Dimethyl, 4,7-di**phenyl-1,lC-phenanthroline** (1 mmol) was added to a warm solution of $[PtMe₂(SEt₂)]₂$ (0.5 mmol) in benzene (25 mL). After a few minutes a dark red solution was obtained, which was slowly con- centrated to 10 mL under vacuum. Warm hexane was added until the solution just became cloudy and the mixture was set aside at -10 °C for 24 h. Orange crystals of $PtMe_2(Ph_2Me_2phen)$ were obtained in 85% yield (two fractions).

Preparation of PtMe₃Cl(bpy). In a 1-L flask PtMe₂(bpy) (0.5 mmol) was dissolved in CH_2Cl_2 (25 mL) at 0 °C. The flask was purged with MeCl until most of the air was removed. The flask was tightly stoppered (some pressure will be developed) and the temperature was raised to 20 \degree C. After several hours the solution turned yellow. Slow evaporation of CH_2Cl_2 in air afforded light yellow crystals of $PtMe₃Cl(bpy)$ in quantitative yield.

Preparation of PtMe₂Cl(bpy)(SnCl₃). A solution of SnCl₄ in $CH₂Cl₂$ (0.33 mmol) was added dropwise to a solution of PtMe₂(bpy) in $CH₂Cl₂$. An orange-yellow highly insoluble precipitate formed immediately and was collected on a filter; yield 85% of PtMe₂Cl- $(bpy)(SnCl₃)$.

Preparation of PtMe₂Cl(bpy)(SnMeCl₂). PtMe₂(bpy) (0.5 mmol) was suspended in dry benzene (10 mL) and subsequently SnMeCl₃ (0.52 mmol) was added with rapid stirring. A nearly colorless solution formed rapidly and soon a white-yellow precipitate formed. As soon as all $PtMe₂(bpy)$ had reacted, dry hexane (10 mL) was added, and the precipitate was collected on a filter and vacuum-dried for 2 h; yield 95%. About half a molecule of benzene is held tenaciously. Recrystallization from CH_2Cl_2/h exane afforded light yellow crystals without lattice solvent. The following compounds were prepared similarly: PtMe₂Cl(bpy)(SnMe₂Cl), PtMe₂Cl(bpy)(SnPhCl₂), $PtMe₂Cl(bpy)(SnPh₂Cl)₂CH₂Cl₂$, and $PtMe₂Cl(phen)(SnMeCl₂).$ They are crystalline and range from nearly white to yellow.

Preparation of PtMe₂Cl(bpy)(SnPh₃). The preparation was similar to that described above. However a 10% excess of $SnPh_3Cl$ was necessary and a small amount should be added to the solution when recrystallizing the compound from $CH₂Cl₂$ to prevent dissociation; yield 90%.

Preparation of PtMe₂Cl(bpy)(SnMe₃). A fivefold excess of $SmMe₃Cl$ was added to the benzene suspension of $PtMe₂(bpy)$ (0.5) mmol) and the mixture was stirred until all $PtMe₂(bpy)$ had reacted (about 12 h). Then 10 mL of hexane was added, and the precipitate was collected on a filter, washed with hexane, and vacuum-dried for 2 h; yield 92%. Because of excessive dissociation, recrystallization from $CH₂Cl₂$ was not possible. The dissociation was studied by NMR and it was shown that the chemical shift and the $J(^{195}Pt-H)$ coupling constant of the methyls bonded to platinum were largely dependent upon the concentration of $SmMe₃Cl$.

Preparation of PtMe₂CI(Ph₂Me₂phen)(SnCl₃). A solution of SnCl₄ in CH_2Cl_2 (0.25 mmol) was added dropwise to a solution of $PtMe_2(Ph_2Me_2phen)$ (0.25 mmol) in benzene (10 mL). The color of the solution changed from red to yellow and a small amount of a yellow precipitate formed which was removed by filtration. Subsequently the solution was evaporated to dryness (under vacuum). The resulting yellow residue was fractionally crystallized from benzene/hexane, the latter fractions being the purer ones; yield **6096.**

Preparation of PtMe₂Cl(Ph₂Me₂phen)(SnMeCl₂).C₆H₆. SnMeCl₃ (0.52 mmol) was added to a solution of $PtMe₂(Ph₂Me₂phen)$ (0.5 mmol) in benzene (10 mL). As soon as the red color had disappeared, hexane was added slowly until the solution started to become cloudy. Yellow-white crystals of PtMe₂Cl(Ph₂Me₂phen)(SnMeCl₂).C₆H₆ were obtained at -20 °C in 93% yield (two fractions).

Preparation of PtMe₂Cl(bpy)(PbPh₂Cl). PbPh₂Cl₂ (0.5 mmol) was added to a stirred solution of $PtMe₂(bpy)$ (0.5 mmol) in THF (10 mL). An immediate reaction occurred and the mixture soon became light yellow. The fine crystalline yellow precipitate was collected on a filter after *5* min, washed with THF and hexane, and subsequently vacuum-dried for 12 h; yield **82%.**

Preparation of PtMe₂Cl(bpy)(PbPh₃).¹/₂THF. This compound was prepared similarly to the above compound with 0.53 mmol of PbPh3C1. Small yellow leaflet crystals were obtained in **90%** yield. The compound slowly turns pink at room temperature. Both lead compounds decompose in CH_2Cl_2 or $CHCl_3$ and could not be recrystallized from these solvents. The NMR data of especially the latter compound could only be obtained with great difficulty, using successive runs at different intervals with new samples.

Preparation of PtMe₂Cl(Ph₂Me₂phen)(PbPh₃). PbPb₃Cl (0.53) mmol) was added to a stirred solution of $PtMe₂(Ph₂Me₂phen)$ (0.5 mmol) in THF *(5* mL). A clear, light yellow solution was rapidly obtained, whereafter hexane was added dropwise to the solution until it started to become cloudy. A small amount of precipitate was removed and the clear solution set aside at -20 °C. After 24 h yellow crystals were obtained and vacuum-dried for 25 h; yield 90%. The compound decomposed in $CH₂Cl₂$ only after several hours. PtMe₂Cl(Ph₂Me₂phen)(PbPh₂Cl) was prepared similarly in 85% yield. This compound showed no decomposition in CH_2Cl_2 after 3 days.

Reaction of PtMe₂Cl(bpy)(SnR_nCl_{3-n}) (R = Ph, Me; $n = 1, 2$) with Lewis Bases. Addition of pyridine, picoline, alcohol, H_2O , or PPh₃ to CH_2Cl_2 solutions of $PtMe_2Cl(bpy)(SnR_nCl_{3-n})$ did not result in any observable reaction ('H NMR). Most of the compound could be recovered at low temperatures after 24 h.

Reaction of PtMe₂(bpy) with $SmMeCl₃(pic)₂$. $SnMeCl₃(pic)₂$ reacted rapidly with PtMe₂bpy in CH_2Cl_2 solution. PtMe₂Cl-(bpy)(SnMeCl₂) was isolated at -20 °C. ¹H NMR showed that the reaction afforded quantitatively 4-picoline and $PtMe₂Cl(bpy)$ - $(SnMeCl₂)$. A similar reaction was observed for $PtMe₂(bpy)$ and $SnMeCl₃(PPh₃)$ and afforded PPh₃ and PtMe₂Cl(bpy)($SnMeCl₂$) in high yield.

Reaction of $[PtMe_2((i-Pr)_2S)]_2$ **with SnMeCl₃(bpy).** SnMeCl₃(bpy) was added to a solution of $[PtMe_2((i-Pr)_2S)]_2^{13}$ ($i-Pr_2S$ = diisopropyl sulfide) in CH_2Cl_2 with stirring. After several days nearly all $SnMeCl₃(bpy)$ had gone into solution and remaining traces were removed by filtration. PtMe₂Cl(bpy)(SnMeCl₂) was obtained at -20 °C in 70% yield. The resulting solution contained mainly $(i-Pr)_2S$ among some other products.

Reaction of $PtMe₂Cl(bpy)(SnR₃)$ ($R = Me$, Ph) with MeI. MeI is added to a suspension or solution of $PtMe₂Cl(bpy)(SnR₃)$ in $CH₂Cl₂$. An immediate reaction took place and $PtMe₃I(bpy)$ and $SnR₃Cl$ were formed quantitatively $(^1H \overline{NMR})$.

Reaction of PtMe₂Cl(bpy)(SnMe₂Cl) with MeI. A tenfold excess of MeI was added to a solution of $PtMe₂Cl(bpy)(SnMe₂Cl)$ in $CH₂Cl₂$ and the reaction was followed by 'H NMR. New resonances of PtMe,Cl(bpy) appeared slowly, whereas the methyl resonances and the low-field bipyridine resonances of $PtMe₂Cl(bpy)(SnMe₂Cl)$ started to broaden. This broadening increased with further progress of the reaction. After about 1 day the yield of $PtMe₃Cl(bpy)$ was optimal and the very slow formation of PtMe31(bpy) became observable. After 1 week the reaction was completed and PtMe31(bpy) was formed nearly quantitatively. Almost no formation of MeCl (-2.32 ppm) was observed, while the resonances at -4.12 ppm (both relative to CH_2Cl_2) could be ascribed to $SmMe₂Cl₂$, indicating that halogen exchange occurred between $PtMe₃Cl(bpy)$ and $SnMe₂ClI$. The reaction of $PtMe₂Cl(bpy)(SnPh₂Cl)$ with MeI was somewhat slower but proceeded similarly. However in this case an appreciable amount of MeCl formed, showing that halogen exchange between PtMe₃Cl(bpy) and Me1 took place.

Reaction of PtMe₂Cl(bpy)(SnRCl₂) (R = Ph, Me) with MeI. No reaction was observed with a 30-fold excess of Me1 after 3 days.

Reaction of PtMe₃Cl(bpy) with MeI. MeI (a tenfold excess) was added to a solution of $PtMe₃Cl(bpy)$ in $CH₂Cl₂$ and the reaction was followed by ¹H NMR. The slow formation of [PtMe₃I(bpy)] and MeCl was observed and the reaction went to completion after about 1 week. The yield of PtMe,I(bpy) was quantitative after evaporation of the solution at room temperature.

Reaction **of** PtMe2(bpy) **with SnMeCI,** Followed by MeI. SnMeCI3 (0.5 mmol) was added to $PtMe₂(bpy)$ (0.5 mmol) in $CH₂Cl₂$ (5 mL) . Subsequently Me1 (10 mL) was added to the nearly colorless solution. After 4 h the solution had turned yellow. Solvent was removed under vacuum and the residue recrystallized from CH_2Cl_2 . Yellow crystals of $PtMe₂I(bpy)(SnMeCl₂)$ were obtained in 40% yield. However, no reaction was observed either when Me1 was added to a solution of pure PtMe₂Cl(bpy)(SnMeCl₂) in CH₂Cl₂ or when PtMe₃I(bpy) or SnMeCl₃ was present. Only when both compounds were present simultaneously was a small amount of the iodine product obtained after 4 days.

Reaction of PtMe₂Cl(bpy)(SnPh₂Cl) with PbPh₂Cl₂. Equimolar quantities of the compounds were shaken vigorously in $CH₂Cl₂$ and an 'H NMR spectrum was run within 2 min. Quantitative formation of $SnPh_2Cl_2$ and $PtMe_2Cl(bpy)(PbPh_2Cl)$ was evident by comparison with standard samples. Decomposition of the lead compound was soon observed. A similar reaction occurred with PbPh₃CI and $PtMe₂Cl(bpy)(SnPh₃).$

Figure 1. Methyl region of the 'H NMR spectrum (100 MHz, in $CH₂Cl₂$, frequency shift relative to $CH₂Cl₂$) of PtMe₂Cl(bpy)- $(SnMeCl₂)$ and its proposed structure.

Results and Discussion

I. Platinum-Tin Compounds. A novel series of platinum-tin compounds have been obtained in nearly quantitative yield according to

$$
PtMe2(N-N) + SnRnCl4-n \rightarrow PtMe2Cl(N-N)(SnRnCl3-n)
$$
 (1)

 $(N-N) = 2,2'$ -bipyridine, 1,10-phenanthroline, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline; $R = Me$, Ph; $n =$ **1-3.**

The 'H NMR data of these new compounds are summarized in Table 11. The assignment of the methyls bonded to platinum or to tin is obvious from the coupling constants. $J(^{195}Pt-H) = 56-63 Hz$ corresponds to methyls bonded to platinum and $J(^{117,119}Sn-H) = \sim 50$, ~ 52 Hz corresponds to methyls bonded to tin. The intensities of the ¹⁹⁵Pt and ^{117,119}Sn satellites were consistent with the natural abundance of **33.7%** for 195Pt and **7.7** and **8.7%** for Il7Sn and lI9Sn. In addition low-field shifts were observed for the methyls bonded to platinum, while high-field shifts were observed for the methyls or phenyls bonded to tin (Tables I1 and 111). Integration of the NMR spectra demonstrated that, in the case of PtMe₂Cl(N-N)(SnMe_nCl_{3-n}) compounds, no methyl transfer from tin to platinum or vice versa has occurred. Similarly in the case of the aryltin compounds only one type of aryl group was found indicating that no phenyl transfer has occurred. In the case of the compounds $Pt\dot{M}e_2\dot{C}l(N-N)(SnRCl_2)$ ($R = Me$, Ph) a simultaneous ¹⁹⁵Pt and ^{117,119}Sn coupling is found with the methyls bonded to platinum, $J(^{195}Pt-H) = 56-60 Hz$ and $J(^{117,119}Sn-H) = 5-6 Hz$. The same is found for the methyls bonded to tin $(R = Me)$, $J(^{195}Pt-H) = 5.8-6 Hz$ and *J*- $(117,119\text{Sn}-\text{H}) = 50$, 52 Hz. This demonstrates clearly the presence of a platinum-tin bond in these compounds (Figure 1).

Similar evidence for a platinum-tin bond is present for the compound $PtMe₂Cl(Ph₂Me₂phen)(SnCl₃)$ in which the platinum methyls have $J(Sn-H) = 14 Hz$. The fact that a metal-metal bond has formed and no methyl or aryl transfer has occurred is of interest, since methyl transfer has been observed in reactions of platinum dimethyl compounds with compounds of Au(I) and $Hg(II)$,^{14,15} which are isoelectronic with $Sn(IV)$. Reaction 1 is also in contrast with the reaction of SnR_3X compounds with Pt(0) compounds, which resulted in the formation of a platinum-tin bond with the simultaneous transfer of an R group to platinum.'

The NMR data (Table 11) also show that the methyls bonded to platinum are magnetically equivalent and that the bipyridine or phenanthroline ligands are (magnetically) symmetrically bonded to platinum. From these data it **is** concluded that the methyl groups are cis to each other and opposite to the nitrogens of the bipyridine or phenanthroline ligand. If this were not the case either they must be trans to **Table III.** ¹H NMR Data for $\text{SnR}_n\text{Cl}_{4-n}^a$

resolved, $J(^{117}Sn-H)$ and $J(^{119}Sn-H)$ are given separately in parentheses. a CH₂Cl₂ solution; in ppm relative to CH₂Cl₂. If

each other and a $J(\text{Pt-H}) \approx 44 \text{ Hz}$ is expected^{16,17} in contrast to the observed value of **56-63** Hz or one methyl and the $\text{SnR}_{n}Cl_{3-n}$ or Cl group must be opposite to the nitrogen atoms. This would mean that the methyl groups have to interchange positions very rapidly and intramolecularly in the NMR time scale, which **is** very unlikely but cannot be excluded.

The above results agree very well with a trans oxidative addition of the Sn-Cl bond to $PtMe_2(N-N)$, which is consistent with the common trans oxidative additions of RX $(R = alk)$; $X =$ halogen)^{13,18} to various dimethylplatinum(II) compounds.

The structure proposed for these compounds is similar to the structure given for $PtMe₂Cl(N-N)(\hat{S}nMeCl₂)$ in Figure **1.**

No tin-hydrogen coupling was observed for the platinum methyls in the case of $PtMe₂Cl(N-N)(SnR₂Cl)$ and PtMe₂Cl(N-N)(SnR₃) (R = Me, Ph). The coupling might be too small to observe due to the difference in the platinum-tin interaction with increasing methyl or phenyl substitution on tin. This is clearly demonstrated if one compares the $J(^{117,119}Sn-H)$ coupling constants of the platinum methyls in the compounds $PtMe₂Cl(Ph₂Me₂phen)(SnCl₃)$ (14 Hz) and PtMe₂Cl(Ph₂Me₂phen)(SnMeCl₂) (6 Hz) or the other $(SnRCl₂)$ compounds of Table II. In the case of the SnMe₃ or $SnPh₃$ compounds the coupling is absent anyway due to intermolecular exchange. The methyl groups of $PtMe₂Cl (bpy)(SnPh₃)$ had broad resonances at 30 °C and slow exchange was observed with added $SnPh₃Cl$. With $PtMe₂Cl (bpy)(SnMe₃)$ not only was fast exchange observed (on the NMR time scale) with SnMe₃Cl but also the value of *J*- $(^{195}Pt-H)$ for the platinum methyls decreased, while its chemical shift went to lower field with increasing concentration of SnMe,Cl, no doubt due to the equilibrium

$$
PtMe2(bpy) + SnMe3Cl \stackrel{\text{def}}{=} PtMe2Cl(bpy)(SnMe3)
$$
 (2)

The lowest values of **56** Hz observed for the coupling constants $J({}^{195}Pt-H)$ is noteworthy for the methyls bonded to platinum in the compounds $PtMe₂Cl(bpy)(SnR_nCl_{3-n})$, compared with the values of 85-89 Hz (Table II) for $PtMe₂(N-N)$ and of **69-71** Hz for PtMe2XR(bpy);13 the latter compounds are also of Pt(IV). Also on the basis of previous work^{16,17} on dimethyl compounds of platinum(II) and $-(IV)$, one would expect a higher *J* value since it was assumed that this coupling constant was mainly determined by the donor atom of the ligand trans to the methyl group. The low value of **56** Hz observed here clearly demonstrates that cis-bonded ligands can also have a large influence on the coupling constant $J({}^{195}Pt-H)$ of the methyls bonded to platinum. The reactivity of the compounds $PtMe₂Cl(bpy)(SnR_nCl_{3-n})$ toward Lewis bases was investigated. They did not react with donor ligands such as alcohol, pyridine, 4-picoline, or triphenylphosphine (eq **3),** and in fact

$$
PtMe2Cl(bpy)(SnRnCl3-n) + donor ligand X (3)
$$

these donor ligands were expelled from the coordination sphere of tin (alcohol was not studied in this case) as summarized by eq 4 and 5. (The SnMe₃ and SnPh₃ compounds were only partially studied due to very weak adduct formation of Lewis bases with $SmMe₃Cl$ and $SmPh₃Cl₁₉$ The compound

Dimethyl Compounds of Platinum(I1)

$$
PtMe2(bpy) + SnMeCl3(PPh3) \rightarrow PtMe2Cl(bpy)(SnMeCl2)+ PPh3 (4)PtMe2(bpy) + SnMeCl3(pic)2 \rightarrow PtMe2Cl(bpy)(SnMeCl2)+ 2pic (5)
$$

PtMe₂Cl(bpy)(SnCl₃) was not studied as it was extremely insoluble.) The above behavior explains the stability of the compounds toward moisture, as apparently Lewis bases will not coordinate to tin in these compounds, protecting the compounds from hydrolysis. This is in contrast to the facile hydrolysis of SnR_nCl_{4-n} compounds, especially for low values of *n.*

The formation of $PtMe₂Cl(bpy)(SnMeCl₂)$ is noteworthy,

eq 6. This might well be an elegant route to prepare plat-
\n
$$
[PtMe_2(i\text{-}Pr)_2S)]_2 + 2(bpy)SnMeCl_3 \rightarrow 2PtMe_2Cl(bpy)(SnMeCl_2) + 2(i\text{-}Pr)_2S
$$
\n(6)

inum-tin compounds with ligands other than bipyridine or phenanthroline.

The relative stability of compounds of the type $PtMe₂Cl (bpy)(SnR_nCl_{3-n})$ was investigated by determining the course of the intermolecular exchange reactions as summarized by *eq* **7** and 8. Reaction **7** gives information about the lability

$$
PtMe2Cl(bpy)(SnRnCl3-n) + Sn*RnCl4-n
$$

\n
$$
\Rightarrow
$$
 PtMe₂Cl(bpy)(Sn^{*}R_nCl_{3-n}) + SnR_nCl_{4-n} (7)
\nPHA₂ Cl(bny)(SnRCl_{3-n}) + SnR₁Cl_{4-n} (7)

 $\text{PtMe}_{\text{2}}\text{Cl(bpy)}(\text{SnR}_{n}\text{Cl}_{3-n}) + \text{SnR}'_{m}\text{Cl}_{4}$

$$
\rightarrow \text{PtMe}_2\text{Cl(bpy)}(\text{SnR}'_m\text{Cl}_{3-m}) + \text{SnR}_n\text{Cl}_{4-n} \tag{8}
$$

$$
R, R' = Me, Ph; n, m = 1, 2, 3
$$

of the platinum-tin bond (dissociation) and the following results were obtained (at 30 "C) for the rate of the intermolecular exchange (on the ${}^{1}H$ NMR time scale): SnMe₃Cl very rapid, $SnMe₂Cl₂$ medium, $SnPh₃Cl$ slow, and not observable for $SnPh₂Cl₂$, $SnMeCl₃$, $SnPhCl₃$. Reaction 8 gives information about the relative stability of the platinum-tin bond and it was found, from successive replacements of SnR_nCl_{3-n} by SnR'_mCl_{3-m} on platinum, that two factors determine the stability (relative to reaction 8). Higher chlorinated $[SnR',Cl_{4-m}]$ compounds form more stable platinum-tin bonded compounds than lower chlorinated SnR_nCl_{4-n} compounds $(4 - m > 4 - n; R' = Me$ or Ph, $R = Me$ or Ph; $n = 1, 2, 3$, and with the same number of chlorines SnPh_nCl_{4-n} forms more stable compounds than $SnMe_nCl_{4-n}$. Although $PtMe₂Cl(bpy)(SnRCl₂)$ reacted with $SnCl₄$, the nature of the products was not clear. The displacements in all cases went to completion immediately except in the case of $R = Me$, $R' = Ph$, and $n = m = 1$ in which case the reaction was still not completed even after 24 h. Both factors are consistent with the idea that the platinum-tin bond is more stable when more electron-withdrawing groups are present on tin. In this way more charge is removed from the platinum atom, which has a high electron density because of the strongly electron-donating methyls bonded to platinum.

Me1 is known to react very rapidly (within seconds) with PtMe₂(bpy)¹³ in a trans oxidative addition reaction to form the very stable $PtMe₃I(bpy)$. Since both tin and carbon are group **4** elements, it is of interest to study the reactivity of the platinum-tin bonded compounds toward MeI. The course of the reactions of PtMe₂Cl(bpy)(SnR_nCl_{3-n}) + MeI(excess) was found to be critically dependent upon the stability of the platinum-tin bond. The investigated reactions are represented in eq 9-11. Reaction 9 went to rapid completion and most

 $PtMe₂Cl(bpy)(SnR₃) + MeI \rightarrow PtMe₃I(bpy) + SnR₃Cl$ (9)

$$
PtMe2Cl(bpy)(SnR2Cl) + MeI \rightarrow PtMe3Cl(bpy) + SnR2ClI
$$
 (10)
\n
$$
PtMe2Cl(bpy)(SnRCl2) + MeI \nleftrightarrow
$$
 (11)

$$
PtMe2Cl(bpy)(SnRC12) + MeI \nleftrightarrow \n\tag{11}
$$

likely an initial dissociation took place, the reverse of eq **2**

Figure 2. Proposed intermediate in the reaction of PtMe₂Cl(bpy)-**(SnR2CI) with MeI.**

followed by oxidative addition of MeI to resulting $PtMe₂(bpy)$. Reaction 10 was followed by reactions 12-14. The different PHM_{θ} $Cl(b_{\text{pv}})(S_{\text{p}}R_{\text{c}}C1) + S_{\text{p}}R_{\text{c}}C1I \ncong PHM_{\theta}Cl(b_{\text{pv}})(S_{\text{p}}R_{\text{c}}I)$

$$
FIME_2CI(opp)(SIR_2CI) + SIR_2CI = FlIME_2CI(opp)(SIR_2I) + SnR_2CI,
$$
 (12)

 $PtMe₃Cl(bpy) + MeI \rightarrow PtMe₃I(bpy) + MeCl$ (13)

 $PtMe₃Cl(bpy) + SnR₂ClI \nightharpoonup PtMe₃I(bpy) + SnR₂Cl$, (14)

course of reaction 10 excluded the possibility that it is due to a dissociation of the platinum-tin bond as otherwise reaction 9 would take place. Reaction 10 was somewhat more rapid for $R = Me$ than for $R = Ph$, but in both cases it took several days to go to completion. Reaction 13 was studied separately and was appreciably slower than reaction 10, when using a tenfold excess of Me1 in both cases. The equilibrium of reaction 14, which was studied by dissolving $\rm SnR_2Cl_2$ and PtMe₃I(bpy) in CH_2Cl_2 lay far to the right with or without the presence of MeI; the rate however could not be determined. In the case of $R = Ph$, the formation of $PtMe₃I(bpy)$ was certainly also due to reaction 13, which could be concluded from the formation of appreciable amounts of MeCl ('H NMR) and by comparing the relative rates of formation of PtMe₃Cl(bpy) (reaction 10) and its conversion to PtMe₃I(bpy) as a function of the Me1 concentration. Reaction 14 was present in the case of $R = Me$, since only a small amount of MeCl was formed. The difference in behavior might well be due to steric factors. The occurrence of reaction 12 was deduced from the fact that the resonances of the platinum methyls were broadened as the reaction proceeded and in addition no exchange could be observed between mixtures of $PtMe₂Cl(bpy)(SnR₂Cl)$ and $PtMe₃Cl(bpy)$ or $PtMe₃I(bpy)$.

Reaction 10 did not proceed via an initial dissociation of $SnR₂Cl₂$. Also initial iodine coordination of MeI to tin, followed by dissociation of the platinum-tin bond, is not likely to occur in this reaction in view of the fact that the platinum-tin compounds are unaffected by Lewis bases such as ROH. However, the course of the reaction of Me1 with $PtMe₂Cl(bpy)(SnR₂Cl)$ can be explained if an intermediate is assumed as shown in Figure 2. The reason that no reaction is observed between $Pt\bar{M}e_2Cl(bpy)(SnRCl_2)$ and MeI is probably due to the higher stability of the platinum-tin bond. Moreover if steric factors or an initial coordination of iodine to tin were the rate-determining step, one would expect the reaction to go more rapidly in the case of higher halogensubstituted tin compounds, since these form more stable complexes with Lewis bases.¹⁹

II. Platinum-Lead Compounds. Reaction of PtMe₂(N-N) $(N-N = bpy$, phen, $Ph_2Me_2phen)$ with $PbPh_2Cl_2$ and $PbPh_3Cl$ proceeded analogously to the reactions with the corresponding tin compounds (reaction 15). These compounds were prepared $PtMe₂(N-N) + PbPh_nCl_{4-n} \rightarrow PtMe₂Cl(N-N)(PbPh_nCl_{3-n})$ (15)

$$
N-N = bpy
$$
, phen, M_2Ph_2phen ; $n = 2, 3$

in THF or acetone as decomposition took place in CH_2Cl_2 or CHC13 and the solubilities of the lead compounds were too low in benzene. The platinum-lead compounds are less stable to decomposition than the platinum-tin compounds which is reflected not only in their decomposition temperatures but also in their facile decomposition in $CH₂Cl₂$ or $CHCl₃$. In these solvents decomposition is observable after \sim 1 min for $PtMe₂Cl(bpy)(PbPh₃)$ and $PtMe₂Cl(phen)(PbPh₃)$, after ~ 5 min for $PtMe₂Cl(bpy)(PbPh₂Cl)$ and $PtMe₂Cl(phen)$ -(PbPh₂Cl), and after several hours for PtMe₂Cl- $(Ph₂Me₂phen)(PbPh₃)$ but is not observed for PtMe₂Cl- $(Ph₂Me₂phen)(PbPh₂Cl)$ even after several days. The increased stability of the Ph_2Me_2 phen compounds is probably caused by steric factors. In spite of the facile decomposition, no dissociation of the platinum-lead bond is observed in the NMR time scale and in all cases a ²⁰⁷Pb coupling is observed with the platinum methyls. This clearly demonstrates the presence of the platinum-lead bond. Of particular interest is the fact that the $J(207Pb-H)$ value is about 3 times smaller for the PbPh₃ compounds than for the PbPh₂Cl compounds. The increased phenyl substitution on lead must cause this drastic lowering of the coupling constants, a property which was mentioned earlier for the tin compounds. Also a low value $J(^{195}Pt-H) \approx 61$ Hz was found for the methyls bonded to platinum, similar to the platinum-tin compounds. The proposed structure for the platinum-lead compounds is similar to the structure proposed for $PtMe₂Cl(SnMeCl₂)(bpy)$ (Figure **2).**

The decomposition of $PtMe₂Cl(bpy)(PbPh₃)$ was complicated and will be investigated further. However, 'H NMR studies provided strong indication that among the products three isomers of $PtMe₂PhCl(bpy)$ were present; only the one with the two methyl groups trans to each other seemed to be absent. Depending on the reaction conditions $[Pb(CH)Cl]_n$ and $PbPh₄$ were formed (elemental analysis and NMR) and also benzene, probably via an initial formation of unstable $PbPh₂$, which turned the solution red, followed by a decomposition involving also CH_2Cl_2 . The results of this investigation and of other reactions involving addition of metal-halogen bonds to $PtMe_2(N-N)$ will be published elsewhere.

Although the platinum-lead compounds were less stable toward decomposition (in CH_2Cl_2) than the corresponding tin compounds, the platinum-lead bond itself seemed to be stronger than the platinum-tin bond. This could be inferred from the fact that there is no dissociation observed for $PtMe₂Cl(bpy)(PbPh₃)$ on the ¹H NMR time scale, whereas dissociation is observed for $PtMe₂Cl(bpy)(SnPh₃)$. Also addition of Me1 did not affect the decomposition of $PtMe₂Cl(bpy)(PbPh₃)$ in $CH₂Cl₂$, whereas it reacted rapidly with the tin compound. Furthermore addition of $SnPh₂Cl₂$ to a solution (CH_2Cl_2) of PtMe₂Cl(bpy)(PbPh₂Cl) did not affect the decomposition of the lead compound (NMR), while addition of $PbPh₂Cl₂$ to $PtMe₂Cl(bpy)(SnPh₂Cl)$ resulted in

the rapid and quantitative formation of $PtMe₂Cl(bpy)$ - $(PbPh₂Cl)$ (NMR) which then decomposed. A similar behavior was observed for the corresponding $SnPh₃Cl$ and PbPh₃C1 compounds.

Acknowledgment. I wish to express my gratitude to Dr. G. B. Street for his helpful discussions and *to* the Office of Naval Research for partial support of this work by ONR contract 3 18-042. I also wish to express my gratitude to IBM for giving me the opportunity of an IBM World Trade Postdoctoral Fellowship from The Netherlands.

Registry No. PtMe₂(Ph₂Mphen), 63133-64-2; PtMe₂Cl(bpy)- $(SnMe₃)$, 63105-47-5; PtMe₂Cl(bpy)(SnMe₂Cl), 63105-46-4; $PtMe₂Cl(bpy)(SnMeCl₂), 63105-45-3; PtMe₂Cl(bpy)(SnCl₃),$ 63133-62-0; PtMe₂Cl(bpy)(SnPhCl₂), 63105-44-2; PtMe₂Cl(bpy)- $(SnPh₂Cl)$, 63105-35-1; PtMe₂Cl(bpy)(SnPh₃), 63105-34-0; $PtMe₂Cl(phen)(SnMeCl₂), 63105-33-9; PtMe₂Cl(Ph₂Mphen)$ - $(SnMeCl₂)$, 63105-32-8; PtMe₂Cl(Ph₂Mphen)(SnCl₃), 63105-31-7; $PtMe₂I(bpy)(SnMeCl₂), 63105-30-6; PtMe₂Cl(bpy)(PbPh₃),$ 63105-29-3; PtMe₂Cl(bpy)(PbPh₂Cl), 63105-28-2; PtMe₂Cl- $(\text{phen})(\text{PbPh}_2\text{Cl})$, 63105-27-1; $\text{PtMe}_2\text{Cl}(\text{Ph}_2\text{Mphen})(\text{PbPh}_2\text{Cl})$, $63105-26-0$; PtMe₂Cl(Ph₂Mphen)(PbPh₃), 63105-25-9; PtMe₂(bpy), 52594-52-2; PtMe₂(phen), 52594-55-5; PtMe₃Cl(bpy), 38194-03-5; PtMe31(bpy), 38194-05-7; PtMe2Cl(phen)(SnPhC12), 63105-20-4; SnMe₃Cl, 1066-45-1; SnMe₂Cl₂, 753-73-1; SnMeCl₃, 993-16-8; $SnMeC1₃(pic)₂$, 63105-19-1; $SnPh₃Cl$, 639-58-7; $SnPh₂Cl₂$, 1135-99-5; $SnPhCl₃, 1124-19-2; [PtMe₂(SEt₂)]₂, 62343-09-3; \overline{MeCl}$, 74-87-3; $SnCl₄, 7646-78-8; PbPh₂Cl₂, 2117-69-3; PbPh₃Cl, 1153-06-6;$ $SnMeCl₃(bpy), 19568-00-4; [PtMe₂((i-Pr)₂S)]₂, 62343-11-7; MeI,$ 74-88-4.

References and Notes

- C. Eaborn, **A.** Pidcock, and B. R. Steele, *J. Chem.* Soc., *Dalton Trans.,* 767 (1976).
- (2) M. Akhtar and H. C. Clark, *J. Organomet. Chern.,* **22,** 233 (1970).
- **W.** Fink, *Helu. Chim. Acta, 59,* 606 (1976). (3) A. J. Layton, R. S. Nyholm, G. A. Pneumaticakis, and M. L. Tobe, *Chem. Ind. (London),* 465 (1967).
- G. Schmid and H. J. Balk, *Chem. Ber.,* **103,** 2240 (1970).
- K. Yamamoto, T. Hayashi, and M. Kumada, *J. Organomet. Chem.,* 28, C37 (1971).
- C. Eaborn, **A.** Pidcock, and B. R. Steele, *J. Chern.* **SOC.,** *Dalton Trans.,* 809 (1975).
- **A. F.** Clement and F. Glockling, *J. Chem. SOC. A,* 1164 (1971). (8)
- F. Glockling and R. **J. I.** Pollock, *J. Chem.* Soc., *Dalton Trans.,* 497 (9) (1975). E. A. V. Ebsworth, J. E. Bentham, and S. Cradoch, *J. Chern.* Soc. *A,*
- 587 (1971).
- R. N. Haszeldine, R. V. Parrish, and R. J. Taylor, *J. Chem. Soc., Dalton*
Trans., 2311 (1974).
A. J. Chalk and J. F. Harrod, *J. Am. Chem. Soc.*, 87, 16 (1965).
J. Kuyper, R. v. d. Laan, F. Jeanneous, and K. Vrieze, *Tr*
-
- *Chem.,* **1,** 199 (1976). R. J. Puddephat and P. J. Thompson, *J. Chem. SOC., Dalton Trans.,* 1810 (1975).
- R. J. Cross and R. Wardle, *J. Chem. SOC. A,* 840 (1970).
-
- J. D. Ruddick and B. L. Shaw, *J. Chem. Soc. A*, 2801, 2964 (1969).
H. C. Clark and L. E. Manzer, *J. Organomet. Chem.*, **59**, 411 (1973).
A. J. Cheyney and B. L. Shaw, *J. Chem. Soc. A*, 3545, 3549 (1971).
-
- Y. Farhangi and **D.** P. Graddon, *J. Organomet. Chem.,* 87,67 (1975).